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1. Introduction

Duality is an important tool in Markov processes, in particular, in continuous-time
Markov chains (CTMC) and interacting particle systems. Excellent references on this
topic are {6] and [13]. It is revealed that duality has a close link with another important
concept, i.c., monotonicity. It seems that Daley [8] was the first to emphasize the latter
important concept.

The important fact concerning duality and monotonicity of CTMC is that, in most
problems of interest, in particular, in applications, we only know the infinitesimal
characteristic, i.e. the so-called g-matrix Q (for a formal definition, see below). Thus,
when discussing duality and monotonicity, the crucial problem is the following: For
a given ¢g-matrix 0, under what condition does there exist a stochastically monotone
Q-function, or does there exist a dual process? How can we obtain such processes if
they do exist. More specifically, considering our dual problem only involves the totally
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stable g-malrix (see Sec. 2), we have to answer the following basic questions which have
considerable significance in both theory and applications.

Question I: What is the “necessary and sufficient" condition for a minimal @ -functton
to be stochastically monotone?

Question 2; 1f the minimal @-function is not monotone, under what condition does there
exist a (non-minimal} monotone @ -function?

Question 3: What is the condition for the monotone (-function to be unique?

Question 4: How does one construct all the monotone Q-functions (for the given ()7

Note that by Siegmund’s result (see Theorem 1.1), the above questions can be posed
equivalently by the “dual process”.

It seems that Kirstein [12] was the first to give the answer to Question 1. Anderson
[2] repeated Kirstein's result. However, for this relatively easy question, their results
are not entirely correct, and thus, some amendments to their conclusions are necessary
(see Remark 3.1 below). Anderson [2] also gives a partial selution to Question 3 (see
Corollary 7.4.3 in [2]). Again, this partial solution is not entirely correct either, and thus,
Question 3 remains open. As for Questions 2 and 4, to our knowledge, they have not yet
been considered. Note that answering Question 4 properly is of particular importance
since by obtaining the corresponding processes from the known condition we can then
apply them to the application problems.

In this paper, we shall discuss the above four questions systematically. For reasons
of simplicity, we assume that the given g-matrix ¢ is conservative, which is the most
important case. We shall discuss the non-conservative case elsewhere. However, in Sec. 2,
we shall not confine ourselves to the conservative case. Some general results shall be
given there.

It is worth pointing out that stochastic monotonicity has important applications,
particularly in birth and death processes. Excellent references on this topic are [18,19].

For simplicity, in this paper, we shall only consider CTMC on a linearly ordered state
space. More specifically, we assume that the state space E = {0, 1, 2, .. .} with the natural
ordering. The discussion of a more general case, where there only exists a partial ordering,
is postponed to a subsequent paper. It should, however, be pointed out that our restriction
to the linearly ordered case is not as limited as it looks. First, some very important
applications concern only linearly ordered state space, for example, birth and death
processes, queuing models, and branching processes. Second, there are some special
properties for duality and monotonicity in the linearly ordered case which are not shared
by general partial ordering state spaces. For example, only in the linearly ordering case are
duality and monotonicity equivalent. These important special properties certainly justify
the independent study of the linearly ordered case, perfecting its theory and application.
Third, the benefit of concentrating on the linearly ordering case is undeniable since it
makes our ideas and methods used in this paper in tackling duality and monotonicity
more transparent and thus easier to generalize to the general partial ordering case. Finally,
but more importantly, even for this linearly ordering case, as we mentioned above, many
problems remain open and some commonly accepted conclusions concerning duality
and monotenicity are not exactly correct and thus amendments are necessary.

We shall constantly use general conclusions in CTMC, An ideal reference of CTMC
is [2]. We shall not hesilate to use general conclusions, notations, and terminologies
in [2] without further explanations, for example, the usage of ¢g-matrix and Q-matrix,
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g-functions and Q-functions, ¢-resolvent and {)-resolvent, etc. (Note the difference
between each pair!} Also, we speak of g-process (resp. Q-process) to denote either
g-function (resp. Q-function) or g-resolvent (resp. Q-resolvent). This kind of usage was
also seen in [14, 15]. Other excellent references on CTMC include [10, 11, 20, 21].

Section 2 contains some important preliminary results. Our main conclusions appear
in Sec. 3. Examples are given in Sec. 4. We now give the basic definitions and notations
used in this paper.

For CTMC on E, stochastical monotonicity can be defined simply as follows:

Definition 1.1. A (standard} transition function P(t) = (pi;(t): i, J€E} for a CTMC
is said to be stochastically monotone if Z;ﬁ.& pij(t} is a non-decreasing function of i for
each fixed ke E and t = Q.

Note that honesty is not assumed for a transition function in Definition 1.1. In this
paper “stochastically monotone" will be referred to as “monotone” when no confusion is
caused. A fundamental result, discovered by Siegmund [17], is the following celebrated
theorem.

Theorem 1.2. [17] A transition function P(t) is stochastically monotone if and only if
there exists a dual transition function for P{1), namely, if and only if there exists another
(standard) transition function P(t) = { p;;(£); 1, jeE} such that

J o]
S b= pple) (Vi jeE. Vi =0 (1.1)

k=0 k=i

The importance of Siegmund’s theorem lies in the fact that it reveals the closc link
between two g-processes. [ndeed, by the proof of Siegmund’s theorem, it is clear that
a stochastically monotone g-function P(¢) and its dual ﬁ(r) are totally determined by
each other. Actually, by (1.1), we have

Pij 6y =Y (pjult) = pj—1x () (¥i,j € E) (1.2)

k=i

(define p_) 4 (r) = 0) and that
J

pii(t) = _(Fin(e) = pivia®) (Vi j € E). (1.3)

k=0

The following relation is then easy to obtain:

piit) — pj—1.:(8) = Piy (1) — Pig1.i(1). (L4
It is worth pointing out that Siegmund’s theorem can be stated in terms of its dual process.

Proposition 1.3. Suppose Pt} is a (standard) transition function which satisfies the
following two conditions:

(1) Zi:(} Pir(t) is a non-increasing function in i for each j€E and t = 0, (1.5)




562 A. Chen and H. Zhang

(iiy lmy soopi; () =0 (Vje K, ¥t =0). {1.6)

Then there exists a stochastically monotone transition function P(t) such that (1.1)-(1.4)
hold true.

Proposition 1.3 is just a “conjugation” for Siegmund’s theorem. Its proof can be given
in exactly the same way as for Theorem 1.2 and thus is omitted here.

A g-function satisfying (1.6) is usually called a Feller—Reuter—Riley function (see
Sec. 2).

Following [2], we introduce the following notations:

D = {all stochastically monotone transition functions} (1.7}
D = {all Feller—Reuter—Riley transition function P(r) such that
3°{_, pik(t) is non-increasing in { for each j and ¢}. (1.8)

Then (1.2) defines a one-to-one mapping of D onto D with inverse given by (1.3).
The elements of D and D are called duals of one another.
On the other hand, it is well known that, for any standard transition function P (¢}, the
limit
lim(P{t) — I}/t (1.9)
=0

exists and this limit matrix, Q = {g;;; {, JEE}, usually called a g-matrix, satisfies the
following conditions:

0 <gqi <400 (#)) (1.10)
> gy = —qi < +o0 (Vi € E). (1.11)
JFEE
Let ¢; = —g;; (i€F). Note that, presently, ¢; = +oo is possible for some i (or even

for all e E). However, we shall immediately see that such a case will not occur when
discussing stochastic monotonicity (duality) (see Sec. 2). When all ¢; (i€ E) are finite,
the g-matrix @ is called totally stable and, furthermore, if

Z%‘ =—g; < +0oo (Vi € E}, (1.12)
j#i

then Q is called conservative. It is also well known that, for a totally stable ¢ -matrix {2,
there always exists a standard transition function P(1), called Feller minimal Q-function,
such that (1.9) holds true.

It is convenient to introduce the following notations in line with (1.7) and (1.8):

D({ Q) = {all the stochastically monotone transition functions
with given g-matrix Q}. (1.13)

So Questions 1 and 2 involve to investigate the conditions under which D((Q)#@ (the
empty set) for a given Q, while Question 3 is concerned with finding conditions under
which |D(Q)| = 1, where |.| denotes the cardinal number of a set.

Suppose that D((Q)#£@ for a given @ and let P{#)e D(Q). Then, by Theorem 1.2,
there exists another transition fuaction p(r) € D such that (1.1)=(1.4) hold true. This
P (1) has its own g-matrix, (Q say. We shall use the following term to compile all the
above information:
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P(r)eD(Q) and P(r) € D(P(1); ©; Q). (1.14)
The meaning of (1.14) should be clear and unambiguous.

2. (General Results

Before formally investigating the existence, uniqueness, and constructions of monotone
(-functions, we first consider some general properties for monotonicity. Note that we
have not made any assumptions about g-matrix O, even some ¢; = 00 might be
possible at the present stage. Our first aim is to exclude the so-called non-totally stable
case. Indeed, it can be easily proved (see Theorem 2.1 below) that such a case will not
occur when discussing monotonicity.

Suppose P (¢} is stochastically monotone. Then by Siegmund’s theorem, there exists
another P (¢) such that (1.1) holds true. Let the g-matrices of P(t) and P(r) be Q and
0O, respectively. Then we have the following simple relations:

qji — qj—1.0 = ¢ij — qiv1,; Vi, j € E) 2.1
(withg_, ; =0 ¥))

gij = Y Gk —Gi+14) (Vi.j € E) (2.2)
k=0
which are easily obtained by (1.4) and (1.3), respectively.
Note that, although Q is determined by Q through (2.2), Q generally cannot be simply
determined by @ although we have (1.2). What we can obtain from (1.2) is the following
inequality (see Lemma 2.4):

30
G = Y (i —qi-1x) (Vi j € E). (2.3)
k=i
In fact, the conditions under which (2.3) become an equality is a crucial problem in our
discussion. Now, the first important conclusion, due to [1], is

Theorem 2.1. [1] If P(t) is vtochasncally monotone, then its dual P(t) is a Feller—
Reuter—Riley g-function. Hence, Q must be totally stable and P (1) is the Feller-Reuter—
Riley minimal Q-function.

Proof. See [2]. o

Remark 2.2. To our knowledge, Anderson [1] was the first to discover the interesting
link between duality and Feller—Reuter—Riley ¢-functions. Here, we use the term “Feller—
Reuter-Riley function” since it was first systematically discussed in the important paper
of Reuter and Riley [16]. This paper has far-reaching significance (see [3] for further
details and other interesting applications).

Since Q is totally stable, then by (2.2), we immediately have that Q itself is also totally
stable. Hence, in discussing monotonicity, we only need to consider the totally stable
case. Thus, we are fully justified in discussing Kolmogorov backward and/or forward
equations, Feller minimal ¢-functions, etc.

An important fact we observe is the following interesting result:
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Theorem 2.3. If P(r) is stochastically monotone, then P(t) must satisfy Kolmogorov
Sforward equations.

Proof We claim that, if P(t)eD(Q), then

d
g P = Zp,f((:)qkj (Vi,j € E, Vt>0). (24)
k=0

Indeed, let P(r} ¢ D(P(1); Q; Q). Then since P(r) is the Feller minimal Q-function
and thus satisfies Kolmogorov's backward equations, i.e.,

d = .
Bt = > Guprt) (Vi jE€E. V=0 (2.5)
k=0
We then have, by (1.3),
d d < . i ‘d d
d—rpij(ﬂ == g (Pir(®) — Piyra(®)) = 2 [d Pik(t) — PJ+1 k()]

¢

= |: éjfﬁfk(t)—zﬁfjﬂ.rﬁzk(t)} {by (2.5))
k=0 Li=0

=0

I
M-
M8

00 i
[ (Gt — dj+1 Pm(f):' Z gjt — @j+11) - Zﬁ:k(t)
=0 =0 k=0

bad
Il
o

(G — Gj14) - Z puc(t) (see (1.1))

k=i

oo k
[Z pix (@i — giv1, z)] = Z pir(t) - Z (Gi1 — G+10)
k=0 1=0

MS EMS

>
Il
<

puqs

pist) Z (ay —qi-1;) (see (2.1))

k=0 =0
oo
= Z pik(t)gr; (recall g ; =0),
k=0
which proves (2.4). o

Note. In the above and elsewhere in this paper, we have constantly used associated and
distributive law which are not true in all cases. The justification for these can be easily
checked. Such trivial detailed verification will be omitted here and elsewhere.

We now turn to Kolmogorov backward equations. First, we point out arelation between

Q and Q.

Lemma 24. Let P(t) beu monotone q-function and P(¢) its dual. Further, let O and
Q be the g-matrices of P(t) and P(t), respectively. Then the limit im, . ocGn; denoted
by C ' exists and
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0<C; <+oo (YjeE). (2.6)
Furthermore,
- o
Gij =Ci+ Y (g —q—10) (Vi j € B 2.7)
k=i

Proof. By (2.1), for any n.

H "
> gk — g1y = 3 (@G — Feri))
k=i k=i

or
[

Z(‘ij —qi—14) = §ij — Gnt1.j (2.8)
i

Letting n—oc in (2.8) yields the fact that the lefi-hand side of (2.8) has a finite limit,
and so does the right-hand side of (2.8). But g;; is fixed when n—>oc¢ in (2.8), thus the
limit limy,—, oc g, exists and the limit is finite. The non-negative property of this limit is
obvious. Assertion (2.6) is thus obtained and (2.7) is just the limiting form of (2.8). O

Comparing (2.7) with (2.3) shows that we have proved (2.3) and that we actually give
more information about Q in (2.7). In particular, if C; = ;= 0(Vj), we obtain

G = @r—q 14 (i, j€E) (2.9)
k=i

Now, an important question arises: Under what conditions will (2.9) hold true? Recall
the definition [2,16] that a totally stable g-mairix ( is called a Feller g-matrix if

lim g, =0 (¥i, j € E).
n—00

So, if Q is Feller, we obtain the simple form (2.9).
Interestingly, we may claim the following conclusion which answers the question
when (2.9) holds true.

Theorem 2.5. Let P (1} be a monotone q-function and P(t) its dual. Further, let Q and
Q be the q-matrices of P(t) and P(t), respectively. Then P(t) satisfies Kolmogorov
backward equations if and only if Q is a Feller matrix. In such a case, we have

o0
@i =Y gk — qj0) (Vi j € E). (2.10)
k=i
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Proof. “If" part. If Q is Feller, then (2.10) holds true. By using (1.3) again and recalling
that P(z} is the Feller minimal (-function and thus satisfies Kolmogorov forward

equations,

i i

%Pij(t) = [; pir(t) — d 27 P, k(f)] [Zp,nz(f)qnc - ZP]+] .!(f)quc]
0 =0

k= =0

(Pji (1) — Bjr1,() - Zétk

k=0

(Air®) = Bjs1a®) - DD (qim — Gi—1m) by (2.10)

k=0 m=!

(P 0) = pr—1 (1) Zq,m (by (1.4))

m=I

ngﬂ Ik EME% EMS E

"

(P = pi—1j®) “dim = Y _ Gim - Pmj ().

=0 m=0

“Only if” part. Let P(r)e D(Q) and P(t) € D(P(¢); Q; Q). Then, by (1.2),

P = _(ppl) — pj1401)) Vi, j € E). (2.t1)

k=i

By introducing the deficit function

oty =1— ijk(r) (Vi,j € E, Vi =0) (2.12)
k=0
(o1 () =1),

Eq. (2.11) can be written as

i1 i—1
pijt) = (1 —o;{f) — ijk(t)) - (1 -1 () — ij—l.k(f)) . {2.13)

k=0 k=0

Now, if i > j, by dividing ¢ on both sides of (2.13), we obtain

pij(t) b —p;(0) Uf(f) P,-k(t)
t - t Z
k=0(k# )

= pict sl o5 1(D) !
. ( Py tl i—1 Y r1 _ Z le,k(f))

k=0(k=£j—1)

Letting t+— 0 then yields

qr’j:(_gjE‘?jk)_(_aj—l_iq‘jl.k)v (2.14)
k=0 k=0
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where

d
o = =o;(0| _, (2.15)

If i < j, then rewrite (2.13) as

i-1 it
pij(t) = (—Uj(I) - ijk(f)) + (Gj—l(f) + ijl,k(f)) ,

k=0 k=0

and the same procedure again yields (2.14).
If i = j, just rewrite (2.13) as

i—1
pi(t) — 1= (—Gj(f) - ijk(f))
k=0

i1

= pj—1 1) — ;1 (0) — Z Pi-1i(t)

k=0(k+#j—1)
Then, dividing by ¢ and letting r—0, we obtain the same relation as (2.14). Hence,

(2.14) holds true for all cases. It is well known [21] that a O-function P(z) satisfies
Kolmogorov's backward equations if and only if

oj=d; (VjeE), {2.16)

where

(s ]
di=gi—Y 4i=—2 9 (2.17)

A j=0

So (2.14) can be written as

oG o0
Q=) g — 2 g 14k
k=i k=i

or

(o &)
Gij = ) (g% — 4j-14)- (2.18)
k=i

Comparing with (2.7) then yields
C;=0 (¥j€E),

ie., O is Feller. O

We then obtain the following important corollary:
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Corollary 2.6. Suppose P(t)isamonotone q-functionwithg-matrix 0 = {g;;; i, jeE}
and that it satisfies Kolmogorov backward equations. Then we have

e8] [ @]
Y ai; <Y @i (¥ike Esuchthatk £i+1). (2.19)
j=k j=k

Furthermore, (2.19) is equivalent to

Na <D am (2.20)
k

=t i=
whenever i < m, and k is such that either k < i ork > m.

Proof. Noting (2.10) and the fact that, fori#j, §; > 0, we immediately obtain (2.19).
Tt is also easy to see that (2.19) and (2.20) are equivalent. O

Now, recall the following definition in [2].

Definition 2.7. A totally stable g-matrix () (not necessarily conservative) is called
monotone if (2.19) or, equivalently, (2.20) holds true.

Before proceeding further, we point out another equivalent condition for monotonicity
via g-resolvents rather than g-functions which is more convenient to use in some cases.

Propositien 2.8. The following two statements are equivalent:
(i} The rransition function P(t) = {pi;(t); i, ] = 0} is monoione, i.e., Z,Oi.k pij(t}yis
a non-decreasing function of i for each fixed ke E andt > (.
(ii) The g-resolvent R(x) = {ri;(A); i, j = 0} of P(t) satisfies the condition that
Zfik A rij(A) is a non-decreasing function of i for each fixed keE and & > 0,
where the resolvent R(A), by definition, is given by

rij(A) :fow e M pi(hdr (A > 0). (2.21)

Proof. (1) = (ii) It is obvious.

(it} = (i) Use the dual technique. O

The details of the proof are omitled since the proof is similar to Siegmund’s theorem,
except one uses g-resolvent instead of transition functions.
Parallel to Proposition 2.8, we have the following conclusion:

Proposition 2.9. The following two statements are equivalent:
(i} The transition function P(ty = {p;;(t); i, ] = 0} is stochastically decreasing, i.e.,
Zj'(:o pi; (1) is a non-increasing function of i for each fixed ke E and t > 0.
(ii) The q-resolvent R(X) = {rij(A);i, j = O} of P(t) satisfies the condition that
Ef:o Arij{}) is a non-increasing function of i for each fixed ke E and 3. > 0.
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Proof. The proof is similar to Proposition 2.8 and is thus omiited. 5]

3. Existence, Uniqueness and Censtruction

We now formally discuss the existence, uniqueness, and censtruction of monotone
transition functions when g-matrix @ is given. The final conclusion is Theorem 3.15
which answers all four basic questions posted in Sec. 1. We repeat that, by Theorem 2.1,
we need only consider totally stable case.

Throughout this section, we assume that Q is conservative since this is the most
important case, in particular, from the viewpoint of applications.

We first discuss the uniqueness problem. Note that by Siegmund’s theorem, there
exists a one-to-one correspondence between a monotone transition function and its dual.
Furthermore, this dual is the minimal Q-function, which is unique. However, this does
not immediately imply unigqueness for monotone @-functions. Indeed, there might exist
two or more monotone g-functions Py (¢) and P:(¢) with the same - -matrix @ but their
dual, Pl (¢) and Pa(t) say, have different g-matrices Q1 and Qz

Fortunately, this will not occur when ¢ is conservative due to Theorem 2.5.

Theorem 3.1. For a given conservative g-marrix Q, if there exists a morotone -
Junction, then it must be unique.

Proof. It is well known that, for a conservative g-matrix @, any Q-function satisfies
Kolmogorov backward equations. Now, suppose there exist two monotone (-functions

Pi(t) and P (). Let their duals be Pl (¢) and P>(1) with g-matrices Ql = {qm} and

0, = {qtz)} respectively. Since both Pi(z) and P>{t) satisfy Kolmogorov backward
equations, by Theorem 2.5, we know that (see (2.10))

_1 ..
( : Z(qja —gi k)= q( 2 (vi, j € E),
k=i

ie.,
01 = 0o,
Thus, both P, (1) and P (¢) are Feller minimal 01{= Q3)-functions. Therefore,
151 (1) = 132({).
Now, by Siegmund’s theorem, we obtain Pi(r) = P(z), since the correspondence
between a monotone transition function and its dual is one-to-one. 0

Theorem 3.1 answers Question 3 in Sec. 1.
The existence problem is more difficult. Let us first consider Feller minimal transition
functions. The following theorem answers Question 1.

Theorem 3.2. For a given conservative g-matrix Q, the Feller minimal Q-furction is
stochastically monotone if and only if the following two conditions hold true:

(1) Q is regular:

(ii) @ is monotone.

(Recall Definition 2.7 for the meaning of a g-matrix { being monotone.)
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Remark 3.3. Condition (ii) was first given by Kirstein [12] (see also [2]). As for condition
(), it seems that Kirstein {12] did not realize that condition (i) is actually necessary for
the minimal @-function to be monotone. Indeed, he made condition (i) as an assumption
in [12]. In trying to polish Kirstein’s result, Anderson [2] seemed to deem condition
(i) as superfluous. Unfortunately, without condition (i), the theorem fails to be true. A
counterexample can be easily given (see Example 4.1.}.

Remark 3.4. Conditions for a conservative g-matrix ¢ being regular (condition {i))
are well known. Indeed, it is equivalent to say that the Feller minimal O-function is
honest and thus unique. Another equivalent condition which is commonly used is that
the equation

{ I -Q)U =0 32)

0=U=<1
has no non-trivial solution for some (and therefore, for all) A > 0. (For details and other
equivalent conditions, see, for example, Theorem 22.71in[2])
In order to illustrate the necessity of condition (i), we first give a somewhat more
general result before proving Theorem 3.2.

Proposition 3.5, Suppose Q is a conservative q-matrix and P(t) is a stochastically
monotone Q-function (not necessarily minimal), then P(t) must be honest, iL.e.,

oo

S pjy=1 (vicE, 120} (3.3)
j=0

Proof. Let P(t)eD(Q) and P(t) e D(P(y: Q; (). Since Q is conservative, we know
that P(r) must satisfy Kolmogorov backward equations. Hence, by Theorem 2.5 (see
(2.10)),

o0
don = ZQOk =0
k=0

Thus, 0 is an absorbing state of P(r) and hence,
poo{t) =1 po() =0 (¥je E, vt > 0).

By noting (1.1), this immediately leads to

o0 j
ijk(f) = Eﬁok(f) =poE)=1 (VjeE, ¥r=0).
k=0 k=0

The conclusion follows. |
Now, we give the proof of Theorem 3.2.

Proof. Necessity. Condition (i) follows from Proposition 3.5 and condition (ii) follows

from Corollary 2.6.

Sufficiency. Omitted. o
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Remark 3.6. The reason for omitting the sufficiency of Theorem 3.2 is because the proof
can be easily obtained by amending Anderson’s original proof. In fact, Anderson’s proof
is correct except the last step. The mistake made by Anderson was that the monotone
convergence theorem was incorrectly used in the last step. This difficulty can be easily
overcome by simply reversing the direction of the inequality. Of course, here, condition
(i) guarantees that the procedure will be successful. This is precisely where condition
(i) works. Another reason for omitting the proof is because the proof of sufficiency
can be covered by our approach in proving Theorem 3.7 below, subject to some obvious
amendments. Anderson’s approach can only be applied to the Feller minimal @ -function
case since he uses the asymptotic technique. However, our new approach, by using the
dual technique, can cover all cases.

We now turn to the more awkward problem: existence of non-minimal monotone
Q-functions. To our knowledge, this problem has not been considered in the literature
and thus remains open. The following theorem answers Question 2.

Theorem 3.7. For a given conservative g-matrix (J, there exists a non-minimal
stochastically monotone Q-function if and only if the following three conditions are
satisfied:

(i) Q is monotone,

(ii) the equation

M—-O0U =0

( Q (3.4)
0=U<1

has a non-trivial solution for some (and therefore, for all) . > (;

(iil) the equation

V(LI — =0
{ ( Q) (3.5)

0< Vel

has a ron-trivial solution for some (and therefore, for all) & > 0.

Remark 3.8, For definitions and applications of Eqgs. (3.4) and (3.5), see (101 or [21]. Of
course, for a particular @, whether Eqs. (3.4) and/or (3.5) have a non-trivial solution
requires further consideration. For the birth-death or branching processes, we have
convenient conditions to check them (see Sec. 4).

The proof of Theorem 3.7 is postponed until after Lemmas 39103.12.

Lemma 3.9 Let O = {qij;i. JeE} be a conservative monotone g-matrix (recall
Definition 2.7) and define another matrix Q = (qij; I, JEE} by

[o.8]
Gij = Y (a — 1) (Vi, j € E), (3.6)
k=i
where g_1. = 0. Then

(i) @ is a totally stable Feller g-matrix; (3.7)
i) Go; =0 (Vj € E); (3.8)

(i) Yh oGk = Tes T (3.9)
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(v) Y _ydin = N odimie (Vi #i)s (3.10)
™ Yo = X odnx =) (3.1D)

and thus, if Q is Feller, then Q is conservative.

Proof. (1) (3.7) is easy and can also be seen in [2].

(i1) (3.8) is derived from (3.6) and the fact that Q is conservative.
(i1i) Summing (3.6) immediately yields (3.9). Considering ¢ is conservative, (3.9)

can be rewritten as
i—1

j
Ddu=- am izl (3.12)
k=0 m=0

Now, if Q is Feller, then g;, —0 (¥m) when j—oc, and hence, by letting j—oc in
(3.12), we obtain

=]

Y G =0 (¥ = 1. (3.13)

k=0

This, together with (3.8), shows that (Q is conservative.
(iv) By (3.9), we have

i 00 20
Y Gk =GR =) Gm— Y dm =i
5=0

m=f m=i+]

If j#i, then g;; = O which yields (3.10), while, if j = i, then g;; < 0 which yields
(3.11). O

In the sequel, when  is conservative and monotone, we call é, defined in (3.6),
the dual g-matrix of Q. The main point here is that Q is also a totally stable g-matrix,
and thus, we may discuss the minimal Q-function, etc. Of course, at present, the dual
g-matrix is just a definition as in (3.6), it is not involved with dual processes. However,
we shall immediately see the importance of dual g-matrix Q in considering monotone
(-functions.

The following two interesting lemmas play an important role in proving Theorems
3.7. They show that there exists a somewhat “symmetric" behavior between the entrance
Martin boundary and exit Martin boundary of { and its dual g-matrix @ — aphenomenon
observed by Cox and Roster [7].

Lemma 3.10. Let Q be a conservative monotone q-matrix and Q its dual g-matrix
defined as in (3.6). Suppose the equation

‘ VI - =10 (3.14)

0<Vel
has a non-trivial solution for some {and therefore, for all) » > 0, then the equation

{ar—@U:o (3.15)

0<U =<1
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also has a non-trivial solution for some (and therefore, for all) A > 0. Moreover, we
have

Jim 3 Zgb,-jm =0, (3.16)
=0

and thus, the minimal Q-function F (1) is a Feller—Reuter—Riley function, where ®(X) =
{®;;(1)} is the minimal Q-resolvent.

Proof. Suppose, for a fixed A > 0, BEq. (3.14) has a non-trivial solution, 1ly/(}x) =
{§,(2); j = 0} say. Then

0 < () < +oc, §(A)#0, and Zv (M) 2 CO) < +o0.

j=0
Define U () = {u;(A); j = 0} as follows:
wih) = cm gwm (vj = 0), (3.17)

then it is easy to see that

wi(A) =0 (vj=0), w;()#0, and w;(d) T 1 — o),

Le.,

0=<UM <1 and UQR) #0. (3.18)
Now, we claim that the I/ (1) defined in (3.17) satisfies

M=) =0 (3.19)
Indeed, since V(1) satisfies (3.14), i.e.,
o
AB) =) TG (k= 0).
i=0
therefore,

J oo ) J
Y By =3 S w00 = Y 5 - Y ik
k=0

k=0 k=0 i=0 i=0

= Z v (A) - Z%m (by (3.9))

=0 m=i
o] &

=3 m- Y0
m=l i=0

Noting (3.17), we see that

ACOU; ) = 3 aimC(um(R)

m=0
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or
hatj(R) = D gimim(h)  (since C(2) > 0).
m=(}

Hence, (3.19) holds true. Now, (3.19), together with (3.18), shows that, for this fixed
(and therefore, for all) A > 0, Eq. (3.15) has a non-trivial solution. Moreover, it is well
known that (3.15) has a maximal solution, X0 = {X'j {r); j = 0 say. By the maximal
property, we certainly have

w(A) < X; (0 <1 (Vi =0).

Since lim;_ o0 #;(A) = 1, we obtain lim; _, ~ X;(1) = 1. But @ is conservative and so
[21]
& —
I=A ) ey () = X ()
=0
and thus lim; _, ¢ A Zfi{) d)ij () =0. (3.20)
By (3.20), we have (actually much stronger than}
lim ¢;;(0) =0 (¥j € E).
1— 00

Thus, by [16], the minimal Q-function is a Feller-Reuter-Riley function. O

Similarly, we have

Lemma 3.11. Let Q = {q;;) be a conservative monotone g-matrix, and Q its dual
gq-matrix defined as in (3.6). Suppose the equation

VT — =0
{ ( & (3.21}
0<Vvel
has a non-trivial solution for some (and therefore, for all} A > 0, then the equation
M—-0)WU=D
( Q) {3.22)
0 < U=l

also has a non-trivial solution for some (and therefore, for all) 1 > 0, where D =
{d;; i = 0} and

di=G—) 4 Viek (323)
i

is the non-conservative quantity of the g-matrix 0. Moreover, we have

20
lim AZ(&,@) =0 (YA >0, (3.24)
i—0oc
j=0
where ®(A) = {qE,- A € E} is the resolvent (i.e., the LaPlace transform} of the
minimal §-function F(r) = {f;‘j (tr).i,j € E, t > 0}. In particular, the minimal
Q-function is the Feller—Reuter—Riley transition function.
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Proof. Let {v;; i €E} be a non-trivial solution of Eq. (3.21) for a fixed A > 0. Then

o0
Ay = ) wgri (Vi € E)
k=0
v =0 (¥ieE) (3.25)

0
0 < Xy <4oo.
i=0
Define
% =
=0 xy=—, xx=-3 v k=1, (3.26)
¢ c =
where ¢ = Y 1o v, and thus, 0 < ¢ < +00.

By (3.25), we have

-1 =1 [oe] fore) i—1
Ay wmi=) (Z vk qkf) = w (qu.-) : (3.27)
i=0 k=0 k=0 i=0

By noting (3.9), (3.26), and the fact that @ is conservative, we obtain

o0 ja's) oo k
l-C-x1=ka(—ZQkf)=ka —Zéu
k=0 i=t k=0 j=0
o ['s} o i—l1
=Z§.tj —ka :Zéu —C+ka
j=0 k=j j=0 k=D
>
=c-d+c- Yy qyx (VMeE), (3.28)
j=0
where d; = — Z}io qi; (VI € E) is the non-conservative quantity of 0.

Equation (3.28) shows that {x;; k > 0}, defined in (3.26), is a solution of the equation

o0
Axe = di+ Y. Grjx; (Vj€E)
j=0 (3.29)
0 S x =l (ke k),
i.e., a solution of (3.22).
However, it is well known [2,10] that (1 — X Zfio @:j (M) i € E) is the maximal
solution of Eq. (3.22), and hence,

[o0]
ngigl—-kz&,-j(k)gl. (3.30}
=0
It is clear by (3.26) that x; 1 1 {(i—00), and thus, by (3.30),
20
il_i)rgoxz(;qaum =0 (3.31)
_,]:

for the fixed A > 0. It is then easy [10, 21] to have that (3.31) holds true forall A > 0. It
follows by (3.31) that the minimal Q-function is the Feller-Reuter-Riley function. O

Lemma 3.11 is a conclusion which is “independent” of other results. However, it holds
a unique interest to us. We shall use 0" to denote our g-matrix.
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Lemma 3,12, ler O* = [ql?‘j,.; i, jeE} be a totally stable g-matrix {not necessarily
conservative) defined on E x E, where again E = {0, 1,2, ...). Suppose Q" satisfies
the condition _ _
J J
ah = Y i (Vi #D, (332)
k=0 k=0

then the Feller minimal Q% -function, F*(t) = {ij (ty; i, jeE} say, satisfies

i j
DR =D 40 (Vi j e B, V=0, (3.33)

k=0 k=0

Remark 3.13. The proof of Lemma 3.12 is similar to that of Theorem 7.3.4 in [2]. Hence,
we shall just mention the main steps and omit the details. For the differences, see Remark

3.14.
Proof. First, assume (* is uniformly bounded, i.e.,

supg < +oo. (3.34)
ick
Then, according to Proposition 2.2.10 in [2], we have an explicit formula for the minimal
Q*-function F*{r).

Fray=e - i @ e, (3.35)
rd n!
where 7 = sup; ¢ and
P=1I+ %Q*. (3.36)

Using condition (3.32), we can easily obtain

J i
Y px=Y pirix (i, j€E) (3.37)
k=0 k=0

where P = (p;;; i, jeE} is given in (3.36).
By induction, we can then obtain, for any n > 0,

i J
Yopi =Y pi\ VijeE) (3.38)
k=0 k=0

where {pf}'); i, jeE} = P".
Thus, by (3.35) and (3.38), we have that

i i
Y 0= frae) (YijeE, V=0, (3.39)

k=0 k=0
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Now, we drop the bounded assumption (3.34) and define the truncated g-matrices
NOF = {Nq;*j.; i, jeE} as follows:

qf; if i,j€Ey
jo o}
N‘I;;': Zq:} ificEy,.j=N
J=N
0 otherwise,

where Eyy = [0,1,2,..., N —1].
It is easy to verify that y O* still satisfies (3.32) (for » ) and is uniformly bounded
for each N. Thus, by using the result just proved, we have

J J
SN =Y nfa) (Vi j e EVE= 0 (3.40)

k=0 k=0

It is also easy to see that, by Proposition 2.2.14 in [2],

N3 Y fir(t) as N—oo foralli, k.t > 0, 3.41)

Then, letting N—oc¢ in (3.40) yields (3.33). O

Remark 3.14. It should be pointed out that, in (3.41), the increasing property is so-called
“essentially increasing”, i.e., v f;} (¢) increases for sufficient large N, and this &V usually
depends on (i, k). For (3.40), this will not cause problems since our sum is finite (for
fixed j!). However, in Anderson’s case, what he obtained is essentially

Zfoﬂfi(f) = ZNfi*-‘i-l.k(t) (3.42)
k=i Py

rather than (3.40). Thus, menotone convergence theorem cannot simply be used in (3.42).
Surely, if the minimal function is honest, then just reversing the direction of (3.42) could
yield the correct conclusion. See Theorem 3.2 and Remark 3.3,

Now, we are ready to prove Theorem 3.7,

Proof. Suppose there exists a non-minimal monotone Q-function, P(t) say. First, since
Q is conservative, we see that P(t) satisfies Kolmogorov backward equations. Then, by
Corollary 2.6, ¢ must be monotone. Condition (i) follows.

Second, since P(¢) is a non-minimal monotone (-function, by Theorem 3.1, we see
that the minimal Q-function cannot be stochastically monotone. However, since we
have just proved that the g-matrix ¢ is monotone, thus, by checking Theorem 3.2, we
immediately obtain that O cannot be regular which is equivalent to condition (ii}.

Third, by Theorem 2.3, P(t) satisfies Kolmogorov forward equations and we also
know that P(¢) is the non-minimal stochastically monotone Q-function; condition (iii)
must then hold true. Indeed, if (iii) does not hold true, then the only @-function which
satisfies Kolmogorov forward equations is Feller minimal, and thus by Theorem 2.3, our
monotone (-function would be Feller minimal, a contradiction. This ends the proof of
the “only if” part.




578 A. Chen and H. Zhang

Conversely, if conditions (i)(iii) hold, then define the dual g-matrix Q as in (3.6).
We see that, by Lemma 3.9, @ is a Feller g-matrix (see (3.7)) and satisfies (3.10), i.e.,

/ J
DGz Y Gk i #D. (3.43)
k=0

k=0

Then, by Lemma 3.12, we obtain that the minimal Q-function F ty={ f, @)y i je E,
t = 0] satisfies

J i
SN faz) fink (Vi jeE, Viz0). (3.44)

_ Moreover, condition (iii) and Lemma 3.11 yield the fact that the minimal Q—function
F (1) is a Feller—Reuter—Riley function. This, together with (3.44), yields (see (1.7))

F(t) e D, (3.45)
which means that there exists a monotone transition function P* (¢} say, such that F (H)is
the dual of P*(¢). Let the g-matrix of P*(r)be @* = {q;"j}. Now, we claim that 0* = Q.
Indeed, since F (1) is the dual of P*(¢), we have

j - —~
Py =Y (fu®) = fira®)
k=0
and thus,
i
g = (G —divie) (i j€E). (3.46)
k=0

However, by the definition of 0 (see (3.6)),

oG

Gji = Z (qic — gj-1.4)-

k=i
We have
Gik — Giv 1.k = Gki — Gr—1.i- (3.47)
Substituting (3.47) into (3.46) yields

‘1;' = qji (Vlv.] € E)!

ie., 0* = Q. Thus, the monotone P*(t) is nothing but a Q-function which means
P*(t)e D(Q). However, P*(¢) cannot be the Feller minimal Q-function, otherwise, by
Theorem 3.2, Q would be regular, contradicting condition (ii). We have therefore proved
that there exists a non-minimal monotone @-function. 0

Summing Theorems 3.1, 3.2, and 3.7, we obtain the following final result which
answers satisfactorily the four basic questions posed in Sec 1.
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Theorem 3.15 For a given conservaiive g-matrix (), there exists a stochastically
monotone Q-function ifand only if the following two conditions hold true simultaneously:

(i} Q is monotone;
(il) either Q is or is not regular and the equation

{V@I—Q):o

348
0=Vel ( )

has a non-trivial solution for some (and therefore, for all) A > O. In all cases where
there exists a stochastically monotone Q-function, it must be unigue. Moreover, when O
is monotone and regular, this unigue stochastically monotone Q-function is the Feller
minimal Q-function, while if Q is monotone, not regular, and Eq. (3.48) has a non-trivial
solution, then this unique stochastically monotone Q-function is non-minimal which can
be constructed via the dual Q-function (the minimal Q-function) and formula (1.3}, 0O

Remark 3.16. Tt is well known that the Feller minimal Q-function can be constructed
asymptotically via @ directly for any g-matrix Q. It is important to note that, although
the monotone g-function may not be Feller minimal, any monotone @-function can be
constructed via the Feller minimal Q-function, together with the simple formula (1.3)
by Theorem 3.15. Hence, we also have answered Question 4 in Sec. .

4. Examples

In this section, we use two simple but important examples to illustrate our results:
birth-death processes and branching processes.

Example 4.1. Birth-Death process. Recall that a conservative g-matrix ¢ of a birth-
death process takes the following form:

b; if j=i+1, i=0
a; if j=i—1, i>1
a=1 T (@.1)
—a; + b)) if j=i, i=0
0 otherwise,
where a; > 0, b; = 0 (Vi = (), except that
ap = 0. 4.2)

Further, recall that a further classification of birth-death processes, according to the
boundary behavior is as follows: The boundary point is called

(i) regular, if both of the following equations (4.3) and (4.4), i.e.,

{(M—Q)U=0 3)
0<U<1
and VI — Q) =0
{( o= 4.4)
0=Vel




580 A. Chen and H. Zhang

have non-trivial solutions;
{ii) exit, if only (4.3) has a non-trivial solution;
(iil) entrance, if only {4.4) has a non-trivial solution;
(iv) natural, if neither (4.3) nor (4.4) has a non-trivial solution.

Note that, for a birth-death g-matrix, we have convenient conditions to check whether
(4.3) or {4.4) has a non-trivial solution. Indeed, (see [2] or [21]} Equation (4.3) has a
non-trivial solution if and only if

20 n—1

1
Z @y - Tp mz:;nm < oo

n=I

while (4.4) has a non-trivial solution if and only if

o0 | ¢
Z b Z T < 400,
n=0 """ "7t m=n+1

where .

: 1 if n=0
Tn =1 byby--b, .
e 1 if n>=1

are potential coefficients.

It is also easy to check that  is always monotone and is a Felier g-matrix.

Note that, by the above classification, we know that a birth-death ¢-matrix is regular
if and only if the boundary point is entrance or natural. Also, note that there exists easy
checking conditions for classification of boundary points.

Considering all these facts, we now have

Theorem 4.1. For a given birth-death g-matrix Q,

(i) if the boundary point is natural or entrance, then the Feller minimal Q-function
is stochastically monotone and honest, and is the only stochastically monotone
Q-function;

(ii) if the boundary point is regular, then the Feller minimal Q-function is not
stochastically monotone. However, there exists another non-minimal stochastically
monotone (-function which is honest and is the only monotone Q-function;

(iil) if the boundary point is exit, then there exists no monotone Q-function.

Proof. See the conclusions of Theorems 3.1, 3.2, and 3.7. ]

Remark 4.2. Although there may not exist dual birth-death processes, the dual g-matrix
Q of any birth-death g-matrix definitely exists. An easy calculation shows that @ is also
a birth-death g-matrix but interchanging the “birth” and “death” rates. Indeed, for Q in
(4.1}, O takes the form of
a; if j=i+1
Gij=1 o (4.5)
—(ai+bi_y) if j=i
0 otherwise.
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We can further verify that there exists a “symmetric” relation between the boundary
points of Q and Q. Actually, we have the following relations for the boundary points:

O natural < Q natural; 0 regular < (¢ regular;
but )
O exit 0 entrance; { entrance < { exit.

Remark 4.3. Our birth-death example shows that our conclusions are not the same as
those in [2]. First, we have shown that, for a birth-death g-matrix { {even if conservative),
the corresponding minimal (-function may not be stochastically monotone and there
may not even exist any stochastically monotone Q-functions, contradicting to Anderson’s
conclusion [2, p. 251]. Second, any birth-death g-matrix is a monotone Reuter g-matrix
{a conservative Feller g-matrix must be Reuter) and there does exist a non-niinimal
stochastically monotone birth-death function, contradicting Corollary 4.3 in [2].

Remark 4.4. Note that, for a given @ in (4.1), the dual g-matrix 0 in (4.5) is itself
monotone and conservative, and thus, we may consider the existence problem for the
monotone (-function. Using the language of dual process, we are referring to the
“re-dual-process”, i.e., the dual of a dual process. If such a “re-dual” process does exist,
we shall call the original Q-process “redualable”. In particular, if this re-dual process
is just the original process (with possibly some one-to-one mappings between state
spaces'), we shall call the original process “self-dualable”. We will not have a formal
discussion here {even for definitions) but just give the following conclusion informally.

Proposition 4.5. For a given birth-death g-matrix Q in (4.1), there exisis a “re-
dualable” Q-process if and only if the boundary point of Q is natural, and in such
cases, it is actually “self-dualable”.

Proof. Itis simple and thus omitted. O

Example 4.2. Branching process example. Recall that a branching g-mairix 0 is given
by

f-bj;,'ﬂ ifj2i+1 )
= 4.6
i { 0 otherwise, (4.6)
where b; > 0 (j#£1), b; £0(j = 1), and

XD

> b =0. (4.7)

j=0

Hence, any branching g-matrix is conservative. It is now easy to prove the following
lemma.

Lemma 4.6, Let Q be a g-matrix defined in (4.6)H4.7). Then
(i) @ is monotone,; (4.8)

(ii)
| VI -Q)=0
0<Vel
has the only trivial solution for all A > 0,

4.9)
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(iii) Q is regular, i.e.,

M —-0U=90
¢ Q) (4.10)
0<U=<1l
has the only trivial solution if and only if, for some (and therefore, for all) £ with
g<e<l,
' ds
& e, 4.11
fg u(s) @1b
where u(s) = 3.:2qb;s’ and q is the extinction probability of the branching
PrOCess.

Note that, if ¢ = 1, then € 1s regular.

Proof. (i) By direct checking. Indeed, if £ < i — 1, then

.9} o0
Z qij = Z gi+1.; =0.

j=i—t J=i—|
Ifk =i, then

0o o0
un = —bo = 0= Z‘]H—l..f'
j=i J=i

while, if k>i + 2,

oG

o o0 o0 o0
Yoay=iy b SGAD Y b <GHDY b= dirL.
i=k i=k i=k j=k

J=k+1

Hence, we have

o0 OO
Y a2 gy kFEI+),
i=k

j—k

and thus, {) is monotone.

(ii) This is the uniqueness condition for branching processes. The proof can be seen
in, for example, [9] by using uniqueness conditions for differential equations. A direct
proof for (4.9) having no non-trivial solution can be seen in [4].

(iii) This is the honest condition for branching processes (see also [9]). 0

Now, we have
Theorem 4.7. For a branching g-matrix Q in (4.6)—{4.7), there exists a stochastically

monotone Q-function if and only if Q is regular. Moreover, the only stochastically
monotone Q-function is the Feller-minimal Q-function.
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Proof. If Q is regular, then, together with Lemma 4.6(i), we have that the minimal
Q-function is stochastically monotene by Theorem 3.2.

Conversely, if there exists a stochastically monotone Q-function, then, by noting
Lemma 4.6(ii) and Theorem 3.7, we see that this stochastically monotone Q-function
cannot be non-minimal and thus must be Feller-minimal. Now, using Theorem 3.2 again,
we have that Q is regular. The last part of Theorem 4.7 has also been proved. O

Note that, for a branching g-matrix in (4.6)—(4.7), it is actually downwardly skip-free.
It is easy to check that the dual g-matrix of Q, Q say, is upwardly skip-free. This fact is
actually true for any monotone skip-free g-matrix.
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